Communication-Avoiding Nonsymmetric Eigensolver using Spectral Divide & Conquer

Grey Ballard¹ Jim Demmel¹ Ioana Dumitriu²

¹UC Berkeley

²University of Washington

Feb 17, 2012

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (CAREER Award #DIG07-10227), as well as the National Science Foundation (Award #DMS-0847661)

Summary

- Goal: solve nonsymmetric eigenproblem using only communication-efficient algorithms
 - matrix multiplication and QR decomposition
- We take the approach of spectral divide & conquer
 - instead of reduction to Hessenberg and QR iteration
- For communication optimality, we need randomization

Memory Models

By communication we mean

- moving data within memory hierarchy on a sequential computer
- moving data between processors on a parallel computer

Communication Cost Model

Measure communication in terms of messages and words

- Flop cost: γ
- Cost of message of size w words: $\alpha + \beta w$
- Total running time of an algorithm (ignoring overlap):

$$\alpha \cdot (\text{\# messages}) + \beta \cdot (\text{\# words}) + \gamma \cdot (\text{\# flops})$$

ullet think of lpha as latency+overhead cost, eta as inverse bandwidth

As flop rates continue to improve more quickly than data transfer rates, the relative cost of communication (the first two terms) grows larger

Motivation

Sequential

00400000									
	Flops	Words	Messages						
Matmul									
QR/LU/Chol	$O(n^3)$	$O\left(\frac{n^3}{\sqrt{M}}\right)$	$O\left(\frac{n^3}{M^{3/2}}\right)$						
Sym Eig		(,)	()						
NonSym Eig	$O(n^3)$?	?						

n = matrix dimension M = fast memory size

- We know how to avoid communication for matrix multiplication, one-sided factorizations, and the symmetric eigenproblem
 - algorithms match theoretical lower bounds
- It's not clear how to obtain optimal communication efficiency using standard approaches to the nonsymmetric eigenproblem
- We will use alternative approach: spectral divide & conquer

Motivation

Para	lle	

I didiioi									
	Flops	Words	Messages						
Matmul									
QR/LU/Chol	$O\left(\frac{n^3}{P}\right)$	$O\left(\frac{n^2}{\sqrt{P}}\right)$	$O(\sqrt{P})$						
Sym Eig		(, ,							
NonSym Eig	$O\left(\frac{n^3}{P}\right)$?	?						

n = matrix dimension P = processors $M = O(n^2/P)$

- We know how to avoid communication for matrix multiplication, one-sided factorizations, and the symmetric eigenproblem
 - algorithms match theoretical lower bounds
- It's not clear how to obtain optimal communication efficiency using standard approaches to the nonsymmetric eigenproblem
- We will use alternative approach: spectral divide & conquer

History of Spectral Divide & Conquer

- Ideas go back to Bulgakov, Godunov, Malyshev [BG88], [Mal89]
- Bai, Demmel, Gu [BDG97]
 - reduced to matmul, QR, generalized QR with pivoting (bug)
- Demmel, Dumitriu, Holtz [DDH07]
 - instead of QR with pivoting, use RURV (randomized URV) (no bug)
 - requires matmul and QR, no column pivoting
- Demmel, Grigori, Hoemmen, Langou [DGHL12]
 - communication-optimal QR decomposition ("CAQR")
- New communication-optimal algorithm
 - use generalized RURV for better rank-detection than [DDH07]
 - use communication-optimal implementations for matrix multiplication and QR as subroutines
 - use randomization in divide and conquer

Overview of Algorithm

One step of divide and conquer:

- Compute $\left(I + (A^{-1})^{2^k}\right)^{-1}$ implicitly
 - maps eigenvalues of A to 0 and 1 (roughly)
- Compute rank-revealing decomposition to find invariant subspace
- Output block-triangular matrix

$$A_{\text{new}} = U^* A U = \begin{bmatrix} A_{11} & A_{12} \\ E_{21} & A_{22} \end{bmatrix}$$

- block sizes chosen so that norm of E_{21} is small
- eigenvalues of A_{11} all lie outside unit circle, eigenvalues of A_{22} lie inside unit circle, subproblems A_{11} and A_{22} solved recursively
- stable, but progress guaranteed only with high probability

Implicit Repeated Squaring

$$A_0 = A$$
, $B_0 = I$
Repeat

- 2 $A_{j+1} = Q_{12}^* \cdot A_j$
- **3** $B_{j+1} = Q_{22}^* \cdot B_j$

until Ri converges

Output is A_k , B_k such that

$$A_k^{-1}B_k=\left(A^{-1}\right)^{2^k}$$

Implicit Repeated Squaring

$$A_0 = A$$
, $B_0 = I$
Repeat

- **2** $A_{j+1} = Q_{12}^* \cdot A_j$
- **3** $B_{j+1} = Q_{22}^* \cdot B_j$

until Ri converges

Output is A_k , B_k such that

$$A_k^{-1}B_k = \left(A^{-1}\right)^{2^k}$$

Next step is to compute a rank-revealing decomposition of

$$(I + (A^{-1})^{2^k})^{-1} = (I + A_k^{-1}B_k)^{-1} = (A_k + B_k)^{-1}A_k$$

Randomized Rank-Revealing QR (RURV)

Use a Haar-distributed random matrix:

- **1** generate random matrix B with i.i.d. N(0,1) entries

so that

$$A = U \cdot R \cdot V$$

where U and V are orthogonal and R is upper triangular

- this decomposition is rank-revealing with high probability
- deterministic algorithm involves column pivoting and is communication-inefficient
 - could use tournament pivoting idea

Generalized RURV (GRURV)

We want to compute RURV of matrices of the form $C^{-1}D$:

$$(A_k+B_k)^{-1}A_k$$

We can do it implicitly:

$$P_1 \cdot U_1 = \operatorname{rq}(U_2^* \cdot C)$$

so that

$$C^{-1}D = (U_2R_1U_1)^{-1}(U_2R_2V) = U_1*(R_1^{-1}R_2)V$$

- ullet No inverses computed (we need only the orthogonal matrix U_1)
- Computing $U_1 \cdot A \cdot U_1^*$ completes one step of divide and conquer

Overview of Algorithm

One step of divide and conquer:

- Compute $\left(I + (A^{-1})^{2^k}\right)^{-1}$ implicitly
 - maps eigenvalues of A to 0 and 1 (roughly)
- Compute rank-revealing decomposition to find invariant subspace
- Output block-triangular matrix

$$A_{\text{new}} = U^* A U = \begin{bmatrix} A_{11} & A_{12} \\ E_{21} & A_{22} \end{bmatrix}$$

- block sizes chosen so that norm of E_{21} is small
- eigenvalues of A₁₁ all lie outside unit circle, eigenvalues of A₂₂ lie inside unit circle, subproblems A₁₁ and A₂₂ solved recursively
- stable, but progress guaranteed only with high probability

Choosing splitting lines

- Computing $\left(I+\left(A^{-1}\right)^{2^k}\right)^{-1}$ splits spectrum along unit circle
- Use Moebius transformation to split along any circle or line in complex plane
 - set $A_0 = wA + xI$, $B_0 = yA + zI$
- Continue splitting until subproblem fits
 - on one processor or
 - in fast memory

and use standard algorithms (no extra communication costs)

Probability of Success

- "Success" means iterative process converges
 - either we split the spectrum, or
 - we narrow down the region containing all the eigenvalues
- If the splitting line does not intersect the $(\epsilon \cdot ||A||)$ -pseudospectrum, then convergence occurs within a constant number of iterations
 - number of iterations depends on smallest relative perturbation that moves an eigenvalue onto splitting line (it does not depend on *n*)
- For the case of normal matrices, the probability of not intersecting the pseudospectrum with randomized bisection is

$$1 - O(n \cdot \epsilon)$$

(ϵ is machine precision)

Communication Upper Bound (sequential case)

• M = memory size, $\gamma = \text{cost of flop}$, $\beta = \text{inverse bandwidth}$, $\alpha = \text{latency}$

Assuming constant number of iterations, cost of one step of divide-and-conquer is

$$C_{\mathsf{D+C}}(n) = \alpha \cdot O\left(\frac{n^3}{M^{3/2}}\right) + \beta \cdot O\left(\frac{n^3}{\sqrt{M}}\right) + \gamma \cdot O(n^3)$$

Assuming we split the spectrum by some fraction each time, the total cost of the entire algorithm is asymptotically the same

- same communication complexity as matrix multiplication and QR
- attains lower bound

Communication Upper Bound (parallel case)

• P = # processors, γ = cost of flop, β = inverse bandwidth, α = latency

Assuming constant number of iterations, cost of one step of divide-and-conquer is

$$C_{\mathsf{D+C}}(n,P) = \alpha \cdot O\left(\sqrt{P}\log^2 P\right) + \beta \cdot O\left(\frac{n^2}{\sqrt{P}}\log P\right) + \gamma \cdot O\left(\frac{n^3}{P}\right)$$

By assigning disjoint subsets of processors to two subproblems after each split, subproblems can be solved in parallel yielding the same asymptotic cost for the entire algorithm

- same communication complexity as QR
- attains lower bound (to within logarithmic factors)

Numerical Experiments / Stopping Criteria

Repeat

$$\mathbf{O} \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \cdot \begin{bmatrix} R_j \\ 0 \end{bmatrix} = \operatorname{qr} \left(\begin{bmatrix} B_j \\ -A_j \end{bmatrix} \right)$$

until $\frac{\|R_j - R_{j-1}\|}{\|R_{i-1}\|}$ is small

$$U = \mathsf{GRURV}(A_i + B_i, A_i)$$

5
$$A_{\text{new}} = U \cdot A \cdot U^* = \begin{bmatrix} A_{11} & A_{12} \\ E_{21} & A_{22} \end{bmatrix}$$

check that $\frac{\|E_{21}\|}{\|A\|}$ is small

Repeat

until $\frac{\|E_{21}\|}{\|A\|}$ is small

 $R conv = \frac{\|R_j - R_{j-1}\|}{\|R_{j-1}\|}$ is cheaper to compute $E conv = \frac{\|E_{21}\|}{\|A\|}$ is relative backward error

Random Matrix

• Random matrix A = randn(50)

Try a tougher matrix

- Half the eigenvalues have real part 10⁻⁵
- Other half of eigenvalues have real part -10⁻⁵
- Normal matrix

Imaginary axis worst choice for splitting line

Try a different splitting curve

- Half the eigenvalues have real part 10⁻⁵
- Other half of eigenvalues have real part -10^{-5}
- Normal matrix

R conv vs E conv

- Half the eigenvalues lie at distance 10⁻⁵ outside unit circle
- Other half of eigenvalues < .5 in absolute value
- Normal matrix

Convergence for Normal Matrices

		Distance to splitting line								
		1e+00	1e-02	1e-04	1e-06	1e-08	1e-10	1e-12		
	10	8	15	21	28	35	41	48		
on	100	8	15	21	28	35	41	48		
Dimension	500	9	15	22	28	35	42	48		
me	1000	9	15	22	28	35	42	48		
Di	5000	10	15	22	30	35	42	49		
	10000	10	15	22	30	35	42	49		

Table: Number of iterations to convergence for normal matrices

- Number of iterations to convergence depends on distance between the splitting line and the nearest eigenvalue
 - not on matrix dimension
- In these experiments, all eigenvalues are at specified distance from splitting line (and all eigenvalues are well-conditioned)
- Convergence means relative backward error of $O(n \cdot \epsilon)$

Conclusions / Summary

- New divide-and-conquer approach communication-optimal
 - minimizes words and messages, in sequential and parallel
 - constant factor more flops than standard algorithms
 - requires randomization
- Convergence depends on distance of splitting line to eigenvalues
- Progress involves
 - splitting the spectrum (reducing the problem size) or
 - splitting the complex plane (localizing the eigenvalues)
- Stability is guaranteed, progress occurs with high probability
- Still working on high performance implementation
 - haven't plugged in fastest QR code, just multithreaded MKL

Thank You!

Please contact me with questions! ballard@cs.berkeley.edu

http://www.eecs.berkeley.edu/~ballard

Find links to papers and other resources at the BEBOP webpage:

http://bebop.cs.berkeley.edu/

Parallel subproblem assignment

Assign number of processors proportional to size of subproblem

- assuming 2D blocked layout, at most one processor owns pieces of both subproblems
- use one of the idle processors to help out
- cost of larger subproblem dominates cost of smaller subproblem

Convergence for Non-normal Matrices

		Distance to splitting line									
		1.	0e+00	1.0	0e-02	1.0e-04		1.0e-06		1.0e-08	
#	1.0e+00	8	5e-15	15	4e-15	21	2e-14	27	2e-13	35	5e-14
o	1.0e+02	8	6e-16	15	1e-14	21	1e-14	27	1e-13	34	3e-14
diti	1.0e+04	9	2e-13	14	5e-13	22	1e-12	28	2e-12	34	2e-12
Condition	1.0e+06	9	9e-12	14	4e-11	22	6e-10	30	2e-10	32	1e-06
0	1.0e+08	9	7e-10	16	9e-09	18	9e-09	18	8e-09	24	5e-09

Table: Number of iterations to convergence and relative backward error after convergence for non-normal matrices (n = 100)

- In these experiments, all eigenvalues are at specified distance from splitting line and one eigenvalue has specified condition #
- Relative backward error is measured by $\frac{\|E_{21}\|}{\|A\|}$
- In case of large error after convergence, can try restarting

Non-normal Matrix with Jordan block

- Half the eigenvalues form Jordan block at 1.3
- Other half of eigenvalues < .5 in absolute value

Try restarting

- Half the eigenvalues form Jordan block centered at 1.3
- Other half of eigenvalues < .5 in absolute value

Restart iteration with nearly block triangular matrix

About RURV

If $\sigma_r \sim \sigma_1$ and $\sigma_{r+1} \sim \frac{1}{\text{poly}(n)} \sigma_r$, then with high probability

$$\sigma_{\min}(R_{11}) \geq O\left(\frac{1}{\sqrt{rn}}\right)\sigma_r$$

 $\sigma_{\max}(R_{22}) \leq O\left((rn)^2\right)\sigma_{r+1}$

- first inequality matches best deterministic URV algorithms
- second inequality is much weaker, but proof is lax (actual bound may be linear)
- repeated squaring will drive σ_r and σ_{r+1} very far apart

About GRURV

Generalized RURV works for arbitrary products of matrices:

$$A_1^{\pm 1} \cdot A_2^{\pm 1} \cdots A_k^{\pm 1}$$

- requires one RURV (or RULV) and k 1 QR's (or RQ's)
- output is $U(R_1^{\pm 1} \cdot R_2^{\pm 1} \cdots R_k^{\pm 1})V$
- rank-revealing properties same as for RURV (on one matrix)
- Deterministic rank-revealing QR (for one matrix) doesn't suffice in generalized case

Sequential Algorithm for TREVC

Algorithm 1 Blocked Iterative Algorithm

```
\begin{aligned} &\textbf{for } j = 1 \text{ to } n/b \, \textbf{do} \\ &\text{solve } T[j,j] \cdot X[j,j] = X[j,j] \cdot D[j,j] \text{ for } X[j,j] \\ &\textbf{for } i = j-1 \text{ down to 1 do} \\ &S = 0 \\ &\textbf{for } k = i+1 \text{ to } j \, \textbf{do} \\ &S = S + T[i,k] \cdot X[k,j] \\ &\textbf{end for} \\ &\text{solve } T[i,i] \cdot X[i,j] + S = X[i,j] \cdot D[j,j] \text{ for } X[i,j] \\ &\textbf{end for} \end{aligned}
```

- notation: T[i,j] is a $b \times b$ block
- use blocksize $b = \Theta(\sqrt{M})$ and block-contiguous DS for optimality
- this algorithm ignores need for scaling to prevent under/overflow
- a recursive, cache-oblivious algorithm also achieves optimality
- LAPACK's TREVC solves for one eigenvector at a time

Parallel Algorithm for PTREVC

- Using 2D blocked layout for T on square grid of processors, compute X with same layout
- Iterate over block diagonals, updating trailing matrix each step
 - local computation occurs in gray: (a) and (d)
 - communication occurs along arrows: (b) is a broadcast of X block,
 (c) is a nearest-neighbor pass of T block

- Communication costs within log P of optimality
- ScaLAPACK's PTREVC solves for one eigenvector at a time

References I

Z. Bai, J. Demmel, and M. Gu.

An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems. Numerische Mathematik, 76(3):279–308, 1997.

A. Ya. Bulgakov and S. K. Godunov.

Circular dichotomy of a matrix spectrum. Sibirsk, Mat. Zh., 29(5):59–70, 237, 1988.

J. Demmel, I. Dumitriu, and O. Holtz.

Fast linear algebra is stable. Numer. Math., 108(1):59–91, 2007.

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.

Communication-optimal parallel and sequential QR and LU factorizations. SIAM Journal on Scientific Computing, 2012. To appear.

A.N. Malyshev.

Computing invariant subspaces of a regular linear pencil of matrices.

Siberian Math. J., 30:559-567, 1989.