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@ Goal: solve nonsymmetric eigenproblem using only
communication-efficient algorithms

e matrix multiplication and QR decomposition

@ We take the approach of spectral divide & conquer
e instead of reduction to Hessenberg and QR iteration

@ For communication optimality, we need randomization



Memory Models

By communication we mean
@ moving data within memory hierarchy on a sequential computer
@ moving data between processors on a parallel computer

Sequential Parallel



Communication Cost Model

Measure communication in terms of messages and words

@ Flop cost: v
@ Cost of message of size w words: a + Sw
@ Total running time of an algorithm (ignoring overlap):

« - (# messages) + - (# words) + v - (# flops)

@ think of « as latency+overhead cost, 5 as inverse bandwidth

As flop rates continue to improve more quickly than data transfer rates,
the relative cost of communication (the first two terms) grows larger



Sequential

Flops | Words | Messages
Matmul
QRILU/Chol | O(®) | O(Z2) | O (4z)
Sym Eig
NonSym Eig | O(n®) ? ?

n = matrix dimension M = fast memory size

@ We know how to avoid communication for matrix multiplication,
one-sided factorizations, and the symmetric eigenproblem

e algorithms match theoretical lower bounds

@ It’'s not clear how to obtain optimal communication efficiency using
standard approaches to the nonsymmetric eigenproblem

@ We will use alternative approach: spectral divide & conquer



Parallel

Flops Words | Messages
Matmul
QRILUChol | O(%) | O(Z) | oWP)
Sym Eig
NonSym Eig | O (”—,f) ? ?

n = matrix dimension P = processors M = O(n?/P)

@ We know how to avoid communication for matrix multiplication,
one-sided factorizations, and the symmetric eigenproblem

e algorithms match theoretical lower bounds

@ It’'s not clear how to obtain optimal communication efficiency using
standard approaches to the nonsymmetric eigenproblem

@ We will use alternative approach: spectral divide & conquer



History of Spectral Divide & Conquer

@ Ideas go back to Bulgakov, Godunov, Malyshev [BG88], [Mal89]

@ Bai, Demmel, Gu [BDG97]
e reduced to matmul, QR, generalized QR with pivoting (bug)

@ Demmel, Dumitriu, Holtz [DDHOQ7]
e instead of QR with pivoting, use RURV (randomized URV) (no bug)
e requires matmul and QR, no column pivoting

@ Demmel, Grigori, Hoemmen, Langou [DGHL12]
e communication-optimal QR decomposition ("CAQR")

@ New communication-optimal algorithm
e use generalized RURYV for better rank-detection than [DDHO07]
e use communication-optimal implementations for matrix
multiplication and QR as subroutines
e use randomization in divide and conquer



Overview of Algorithm

One step of divide and conquer:

@ Compute 1+ (A—1)2k)_1 implicitly

e maps eigenvalues of Ato 0 and 1 (roughly)
© Compute rank-revealing decomposition to find invariant subspace
© Output block-triangular matrix

A1 A2

A = U*AU =
new Exy Ax

@ block sizes chosen so that norm of Eo4 is small

@ eigenvalues of Ay1 all lie outside unit circle, eigenvalues of A lie
inside unit circle, subproblems Ay; and A, solved recursively

@ stable, but progress guaranteed only with high probability



Implicit Repeated Squaring

Ao = A By = I
Repeat
o Qi1 Qo . Ff] —qr Bj Output is Ay, B such that
Qo1 Q2| |O —A;

1 2
Q A1=Q" A A B = (Ai )
Q Bi1=Qx" B
until R; converges



Implicit Repeated Squaring

Ao = A By = I
Repeat
o Qi1 Qo . R] —qr Bj Output is Ay, B such that
Qo1 Q2| |O —A;

1 2
Q A1=Q" A A B = (Ai )
Q Bi1=Qx" B
until R; converges

@ Next step is to compute a rank-revealing decomposition of

(1) = (14 ATB) = (A + BO A



Randomized Rank-Revealing QR (RURV)

Use a Haar-distributed random matrix:

@ generate random matrix B with i.i.d. N(0, 1) entries
Q V-Ry =qr(B)
Q@ U - R=qr(A- V¥
so that
A=U-R-V

where U and V are orthogonal and R is upper triangular

@ this decomposition is rank-revealing with high probability

@ deterministic algorithm involves column pivoting and is
communication-inefficient

e could use tournament pivoting idea




Generalized RURV (GRURYV)

We want to compute RURV of matrices of the form C~'D:
(Ax + Bx) " A
We can do it implicitly:
Q U, Ry V=rurv(D)
Q Ry Uy =rq(lk"-C)

so that
CT'D = (LR Uy) (LR V) = Ui*(Ry 'Ro) V

@ No inverses computed (we need only the orthogonal matrix Uy)
@ Computing U; - A- U;* completes one step of divide and conquer



Overview of Algorithm

One step of divide and conquer:

@ Compute 1+ (A—1)2k)_1 implicitly

e maps eigenvalues of Ato 0 and 1 (roughly)
© Compute rank-revealing decomposition to find invariant subspace
© Output block-triangular matrix

A1 A2

A = U*AU =
new Exy Ax

@ block sizes chosen so that norm of Eo4 is small

@ eigenvalues of Ay1 all lie outside unit circle, eigenvalues of A lie
inside unit circle, subproblems Ay; and A, solved recursively

@ stable, but progress guaranteed only with high probability
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Choosing splitting lines

-1
@ Computing (I + (A*1)2k> splits spectrum along unit circle

@ Use Moebius transformation to split along any circle or line in
complex plane

o set Ay = wA+xl, By =yA+ zl

@ Continue splitting until subproblem fits

@ 0n one processor or
e in fast memory

and use standard algorithms (no extra communication costs)
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Randomized Bisection

Goals: split spectrum or split bounding region

Pick inner circle
around center

. Gershgorin
bounding disc
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Randomized Bisection

Goals: split spectrum or split bounding region

Choose random
angle

_________4___;___;_________ -
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Randomized Bisection

Goals: split spectrum or split bounding region
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Randomized Bisection

Goals: split spectrum or split bounding region

Choose random

perpendicular

in range
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Randomized Bisection

Goals: split spectrum or split bounding region



Probability of Success

@ “Success” means iterative process converges

o either we split the spectrum, or
e we narrow down the region containing all the eigenvalues

@ If the splitting line does not intersect the (e - || A||)-pseudospectrum,
then convergence occurs within a constant number of iterations

e number of iterations depends on smallest relative perturbation that
moves an eigenvalue onto splitting line (it does not depend on n)

@ For the case of normal matrices, the probability of not intersecting
the pseudospectrum with randomized bisection is

1-0(n-e)

(e is machine precision)
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Communication Upper Bound (sequential case)

@ M = memory size, v = cost of flop, 8 = inverse bandwidth, o = latency

Assuming constant number of iterations, cost of one step of
divide-and-conquer is

Conolm) =0 (3 )+ 0( 72 ) +7-0)

Assuming we split the spectrum by some fraction each time, the total
cost of the entire algorithm is asymptotically the same

@ same communication complexity as matrix multiplication and QR
@ attains lower bound
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Communication Upper Bound (parallel case)

@ P = # processors, v = cost of flop, 5 = inverse bandwidth, o = latency

Assuming constant number of iterations, cost of one step of
divide-and-conquer is

CD+C(n’P):O"O<\/ﬁ|092P>+B-O<\;;I09P)+7.O('§>

By assigning disjoint subsets of processors to two subproblems after
each split, subproblems can be solved in parallel yielding the same
asymptotic cost for the entire algorithm

@ same communication complexity as QR
@ attains lower bound (to within logarithmic factors)
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Numerical Experiments / Stopping Criteria

Repeat
Qi Q2| |R B;
=qr
> [021 Qez o] 1 ([_Af]>

Q A = Q" - A
Q Bii1=Qx"- B

o [|Ri—Ri— .
until W is small
-

© U=GRURV(A + B, A)

A1 A12]

Aew=U -A-U" =
© Arew [521 Az

check that Izl is small

1R —Rj—1l
1R 11l

R conv = is cheaper to compute

Repeat

R B
T2 2][4-+(2)
Q A =Qr" A
Q B.1=Q" B
© U= GRURV(A + B, A)
At A12]

Aew=U-A-U" =
O 4w [521 Az

until % is small

E conv = [l is relative backward error
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Random Matrix

@ Random matrix A = randn(50)

Eigenvalues 0 Convergence
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Try a tougher matrix

@ Half the eigenvalues have real part 10~°
@ Other half of eigenvalues have real part —10~°
@ Normal matrix

Eigenvalues Convergence
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@ Imaginary axis worst choice for splitting line
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Try a different splitting curve

@ Half the eigenvalues have real part 10~°
@ Other half of eigenvalues have real part —10~°
@ Normal matrix

Eigenvalues o Convergence
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R conv vs E conv

@ Half the eigenvalues lie at distance 10~° outside unit circle
@ Other half of eigenvalues < .5 in absolute value
@ Normal matrix

Eigenvalues, n=20 H Convergence Plot
15 10
1 T T
- ~ -
- ~ 10
¥ *
0.5 / \
/ * \
/ * * \
0 + % ¥ 107
! * % ¥ ]
\ * ,
\
— H /
0% ¥<\ * 15
p _
1
S . 0
-1 *o
-15 107
-15 -1 -05 0 05 1 15 0 5 10 15 20 25 30

20



Convergence for Normal Matrices

Distance to splitting line

1e+00 | 1e-02 | 1e-04 | 1e-06 | 1e-08 | 1e-10 | 1e-12
10 8 15 | 21 28 35 | 41 48
S| 100 8 15 | 21 28 35 | 4 48
@ | 500 9 15 | 22 28 35 | 42 48
g 1000 | 9 15 | 22 28 35 | 42 48
8| 5000 | 10 15 | 22 30 35 | 42 49
10000 | 10 15 | 22 30 35 | 42 49

Table: Number of iterations to convergence for normal matrices

@ Number of iterations to convergence depends on distance
between the splitting line and the nearest eigenvalue
@ not on matrix dimension
@ In these experiments, all eigenvalues are at specified distance
from splitting line (and all eigenvalues are well-conditioned)
@ Convergence means relative backward error of O(n - ¢)
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Conclusions / Summary

@ New divide-and-conquer approach communication-optimal

@ minimizes words and messages, in sequential and parallel
e constant factor more flops than standard algorithms
@ requires randomization

@ Convergence depends on distance of splitting line to eigenvalues

@ Progress involves

e splitting the spectrum (reducing the problem size) or
e splitting the complex plane (localizing the eigenvalues)

@ Stability is guaranteed, progress occurs with high probability

@ Still working on high performance implementation
e haven'’t plugged in fastest QR code, just multithreaded MKL

22



Thank You!

Please contact me with questions!
ballard@cs.berkeley.edu
http://www.eecs.berkeley.edu/~ballard

Find links to papers and other resources at the BEBOP webpage:
http://bebop.cs.berkeley.edu/


http://www.eecs.berkeley.edu/~ballard
http://bebop.cs.berkeley.edu/

Parallel subproblem assignment

@ Assign number of processors proportional to size of subproblem

@ assuming 2D blocked layout, at most one processor owns pieces
of both subproblems

@ use one of the idle processors to help out
@ cost of larger subproblem dominates cost of smaller subproblem
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Convergence for Non-normal Matrices

Distance to splitting line
1.0e+00 1.0e-02 1.0e-04 1.0e-06 1.0e-08
# | 1.0e+00 || 8 | 5e-15 15 | 4e-15 || 21 | 2e-14 || 27 | 2e-13 || 35 | 5e-14
S | 1.0e+02 || 8 | 6e-16 15 | 1e-14 || 21 | 1e-14 || 27 | 1e-13 || 34 | 3e-14
% 1.0e+04 || 9 | 2e-13 14 | 5e-13 || 22 | 1e-12 || 28 | 2e-12 || 34 | 2e-12
S | 1.0e+06 || 9 | 9e-12 14 | 4e-11 22 | 6e-10 || 30 | 2e-10 || 32 | 1e-06
© 1.0e+08 || 9 | 7e-10 16 | 9e-09 18 | 9e-09 18 | 8e-09 || 24 | 5e-09

Table: Number of iterations to convergence and relative backward error after
convergence for non-normal matrices (n = 100)

@ In these experiments, all eigenvalues are at specified distance
from splitting line and one eigenvalue has specified condition #

[l E21 |
1Al

@ In case of large error after convergence, can try restarting

@ Relative backward error is measured by
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Non-normal Matrix with Jordan block

@ Half the eigenvalues form Jordan block at 1.3
@ Other half of eigenvalues < .5 in absolute value

15

Eigenvalues, n=32
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Try restarting

@ Half the eigenvalues form Jordan block centered at 1.3
@ Other half of eigenvalues < .5 in absolute value

15

Eigenvalues, n=32
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@ Restart iteration with nearly block triangular matrix
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About RURV
or, then with high probability

o(fp)

O ((n)?) o7+

If Or ~ 01 and Or4q ™~ poly(n)

Umin(Rﬂ)

v

IN

Umax(RZZ)

@ first inequality matches best deterministic URV algorithms

@ second inequality is much weaker, but proof is lax (actual bound
may be linear)

@ repeated squaring will drive o, and o, ¢ very far apart
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About GRURV

@ Generalized RURV works for arbitrary products of matrices:

A1 +1 A2i1 . 'Aki1

e requires one RURV (or RULV) and k — 1 QR’s (or RQ’s)
@ output is U(R1 £ :‘:l’gj:1 s Fl,k:H)V
e rank-revealing properties same as for RURV (on one matrix)

@ Deterministic rank-revealing QR (for one matrix) doesn’t suffice in
generalized case
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Sequential Algorithm for TREVC

Algorithm 1 Blocked lterative Algorithm

forj=1ton/bdo
solve T{j, 1 X[j,j] = X[j.j1 - D[j,j] for X[j. ]
fori=j—1downto1do
S$=0
fork=i+1tojdo
S =S+ Tli,k] - X[k, J]
end for
solve TTi,i] - X[i,j] + S = X[i, j] - D[j, ] for X[i, ]
end for
end for

@ notation: TTi,j] is a b x b block

@ use blocksize b = ©(v/M) and block-contiguous DS for optimality
@ this algorithm ignores need for scaling to prevent under/overflow
@ arecursive, cache-oblivious algorithm also achieves optimality

@ LAPACK’s TREVC solves for one eigenvector at a time
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Parallel Algorithm for PTREVC

@ Using 2D blocked layout for T on square grid of processors,
compute X with same layout
@ lterate over block diagonals, updating trailing matrix each step

e local computation occurs in gray: (a) and (d)
e communication occurs along arrows: (b) is a broadcast of X block,
(c) is a nearest-neighbor pass of T block

| A4 4 |""""‘
| 3> > >

- B

vIvIvirvyy

(a) (b) (c) (d)

@ Communication costs within log P of optimality
@ ScalLAPACK’s PTREVC solves for one eigenvector at a time
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