
Communication-Avoiding Nonsymmetric Eigensolver
using Spectral Divide & Conquer

Grey Ballard1 Jim Demmel1 Ioana Dumitriu2

1UC Berkeley

2University of Washington

Feb 17, 2012

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by
matching funding by U.C. Discovery (CAREER Award #DIG07-10227), as well as the National

Science Foundation (Award #DMS-0847661)

Summary

Goal: solve nonsymmetric eigenproblem using only
communication-efficient algorithms

matrix multiplication and QR decomposition

We take the approach of spectral divide & conquer
instead of reduction to Hessenberg and QR iteration

For communication optimality, we need randomization

1

Memory Models

By communication we mean
moving data within memory hierarchy on a sequential computer
moving data between processors on a parallel computer

SLOW

FAST

Local

Sequential Parallel

Local Local

Local

Local Local Local

Local

Local

2

Communication Cost Model

Measure communication in terms of messages and words

Flop cost: γ
Cost of message of size w words: α + βw
Total running time of an algorithm (ignoring overlap):

α · (# messages) + β · (# words) + γ · (# flops)

think of α as latency+overhead cost, β as inverse bandwidth

As flop rates continue to improve more quickly than data transfer rates,
the relative cost of communication (the first two terms) grows larger

3

Motivation

Sequential
Flops Words Messages

Matmul
O(n3) O

(
n3
√

M

)
O
(

n3

M3/2

)
QR/LU/Chol

Sym Eig
NonSym Eig O(n3) ? ?

n = matrix dimension M = fast memory size

We know how to avoid communication for matrix multiplication,
one-sided factorizations, and the symmetric eigenproblem

algorithms match theoretical lower bounds

It’s not clear how to obtain optimal communication efficiency using
standard approaches to the nonsymmetric eigenproblem
We will use alternative approach: spectral divide & conquer

4

Motivation

Parallel
Flops Words Messages

Matmul
O
(

n3

P

)
O
(

n2
√

P

)
O(
√

P)QR/LU/Chol
Sym Eig

NonSym Eig O
(

n3

P

)
? ?

n = matrix dimension P = processors M = O(n2/P)

We know how to avoid communication for matrix multiplication,
one-sided factorizations, and the symmetric eigenproblem

algorithms match theoretical lower bounds

It’s not clear how to obtain optimal communication efficiency using
standard approaches to the nonsymmetric eigenproblem
We will use alternative approach: spectral divide & conquer

4

History of Spectral Divide & Conquer

Ideas go back to Bulgakov, Godunov, Malyshev [BG88], [Mal89]

Bai, Demmel, Gu [BDG97]
reduced to matmul, QR, generalized QR with pivoting (bug)

Demmel, Dumitriu, Holtz [DDH07]
instead of QR with pivoting, use RURV (randomized URV) (no bug)
requires matmul and QR, no column pivoting

Demmel, Grigori, Hoemmen, Langou [DGHL12]
communication-optimal QR decomposition ("CAQR")

New communication-optimal algorithm
use generalized RURV for better rank-detection than [DDH07]
use communication-optimal implementations for matrix
multiplication and QR as subroutines
use randomization in divide and conquer

5

Overview of Algorithm

One step of divide and conquer:

1 Compute
(

I + (A−1)2k
)−1

implicitly

maps eigenvalues of A to 0 and 1 (roughly)
2 Compute rank-revealing decomposition to find invariant subspace
3 Output block-triangular matrix

Anew = U∗AU =

[
A11 A12

E21 A22

]

block sizes chosen so that norm of E21 is small
eigenvalues of A11 all lie outside unit circle, eigenvalues of A22 lie
inside unit circle, subproblems A11 and A22 solved recursively
stable, but progress guaranteed only with high probability

6

Implicit Repeated Squaring

A0 = A, B0 = I
Repeat

1

[
Q11 Q12

Q21 Q22

]
·

[
Rj

0

]
= qr

([
Bj

−Aj

])
2 Aj+1 = Q12

∗ · Aj

3 Bj+1 = Q22
∗ · Bj

until Rj converges

Output is Ak , Bk such that

Ak
−1Bk =

(
A−1

)2k

Next step is to compute a rank-revealing decomposition of(
I + (A−1)2k

)−1
=
(

I + A−1
k Bk

)−1
= (Ak + Bk)−1Ak

7

Implicit Repeated Squaring

A0 = A, B0 = I
Repeat

1

[
Q11 Q12

Q21 Q22

]
·

[
Rj

0

]
= qr

([
Bj

−Aj

])
2 Aj+1 = Q12

∗ · Aj

3 Bj+1 = Q22
∗ · Bj

until Rj converges

Output is Ak , Bk such that

Ak
−1Bk =

(
A−1

)2k

Next step is to compute a rank-revealing decomposition of(
I + (A−1)2k

)−1
=
(

I + A−1
k Bk

)−1
= (Ak + Bk)−1Ak

7

Randomized Rank-Revealing QR (RURV)

Use a Haar-distributed random matrix:

1 generate random matrix B with i.i.d. N(0,1) entries
2 V · R1 = qr(B)

3 U · R = qr(A · V ∗)

so that
A = U · R · V

where U and V are orthogonal and R is upper triangular

this decomposition is rank-revealing with high probability
deterministic algorithm involves column pivoting and is
communication-inefficient

could use tournament pivoting idea

8

Generalized RURV (GRURV)

We want to compute RURV of matrices of the form C−1D:

(Ak + Bk)−1Ak

We can do it implicitly:

1 U2 · R2 · V = rurv(D)

2 R1 · U1 = rq(U2
∗ · C)

so that
C−1D = (U2R1U1)−1(U2R2V) = U1

∗(R−1
1 R2)V

No inverses computed (we need only the orthogonal matrix U1)
Computing U1 · A · U1

∗ completes one step of divide and conquer

9

Overview of Algorithm

One step of divide and conquer:

1 Compute
(

I + (A−1)2k
)−1

implicitly

maps eigenvalues of A to 0 and 1 (roughly)
2 Compute rank-revealing decomposition to find invariant subspace
3 Output block-triangular matrix

Anew = U∗AU =

[
A11 A12

E21 A22

]

block sizes chosen so that norm of E21 is small
eigenvalues of A11 all lie outside unit circle, eigenvalues of A22 lie
inside unit circle, subproblems A11 and A22 solved recursively
stable, but progress guaranteed only with high probability

10

Choosing splitting lines

Computing
(

I +
(
A−1)2k)−1

splits spectrum along unit circle

Use Moebius transformation to split along any circle or line in
complex plane

set A0 = wA + xI, B0 = yA + zI

Continue splitting until subproblem fits
on one processor or
in fast memory

and use standard algorithms (no extra communication costs)

11

Randomized Bisection

Goals: split spectrum or split bounding region

!"#$%"&&'(%#"(#)'%

*(+,&-%#'&.'(%

/'(012+("&%

3+,&-"&2%-"0#%

12

Randomized Bisection

Goals: split spectrum or split bounding region

!"##$%&'()*#+&

(),-%&

!&

12

Randomized Bisection

Goals: split spectrum or split bounding region

12

Randomized Bisection

Goals: split spectrum or split bounding region

!"##$%&'()*#+&

,%',%)*-./0('&&

-)&'()1%&

12

Randomized Bisection

Goals: split spectrum or split bounding region

12

Probability of Success

“Success” means iterative process converges
either we split the spectrum, or
we narrow down the region containing all the eigenvalues

If the splitting line does not intersect the (ε · ‖A‖)-pseudospectrum,
then convergence occurs within a constant number of iterations

number of iterations depends on smallest relative perturbation that
moves an eigenvalue onto splitting line (it does not depend on n)

For the case of normal matrices, the probability of not intersecting
the pseudospectrum with randomized bisection is

1−O(n · ε)

(ε is machine precision)

13

Communication Upper Bound (sequential case)

M = memory size, γ = cost of flop, β = inverse bandwidth, α = latency

Assuming constant number of iterations, cost of one step of
divide-and-conquer is

CD+C(n) = α ·O
(

n3

M3/2

)
+ β ·O

(
n3
√

M

)
+ γ ·O(n3)

Assuming we split the spectrum by some fraction each time, the total
cost of the entire algorithm is asymptotically the same

same communication complexity as matrix multiplication and QR
attains lower bound

14

Communication Upper Bound (parallel case)

P = # processors, γ = cost of flop, β = inverse bandwidth, α = latency

Assuming constant number of iterations, cost of one step of
divide-and-conquer is

CD+C(n,P) = α ·O
(√

P log2 P
)

+ β ·O
(

n2
√

P
log P

)
+ γ ·O

(
n3

P

)

By assigning disjoint subsets of processors to two subproblems after
each split, subproblems can be solved in parallel yielding the same
asymptotic cost for the entire algorithm

same communication complexity as QR
attains lower bound (to within logarithmic factors)

15

Numerical Experiments / Stopping Criteria

Repeat

1

[
Q11 Q12

Q21 Q22

]
·

[
Rj

0

]
= qr

([
Bj

−Aj

])
2 Aj+1 = Q12

∗ · Aj

3 Bj+1 = Q22
∗ · Bj

until ‖Rj−Rj−1‖
‖Rj−1‖

is small

4 U = GRURV(Aj + Bj ,Aj)

5 Anew = U · A · U∗ =

[
A11 A12

E21 A22

]
check that ‖E21‖

‖A‖ is small

Repeat

1

[
Q11 Q12

Q21 Q22

]
·

[
Rj

0

]
= qr

([
Bj

−Aj

])
2 Aj+1 = Q12

∗ · Aj

3 Bj+1 = Q22
∗ · Bj

4 U = GRURV(Aj + Bj ,Aj)

5 Anew = U · A · U∗ =

[
A11 A12

E21 A22

]
until ‖E21‖

‖A‖ is small

R conv =
‖Rj−Rj−1‖
‖Rj−1‖

is cheaper to compute E conv = ‖E21‖
‖A‖ is relative backward error

16

Random Matrix

Random matrix A = randn(50)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Eigenvalues

Real

Im
a

g

2 4 6 8 10 12

10
−15

10
−10

10
−5

10
0

Convergence

IRS Iterations

B
a
c
k
w

a
rd

 E
rr

o
r

R conv

E conv

17

Try a tougher matrix

Half the eigenvalues have real part 10−5

Other half of eigenvalues have real part −10−5

Normal matrix

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Eigenvalues

Real

Im
a

g

5 10 15 20 25

10
−15

10
−10

10
−5

10
0

Convergence

IRS Iterations

B
a
c
k
w

a
rd

 E
rr

o
r

R conv

E conv

Imaginary axis worst choice for splitting line

18

Try a different splitting curve

Half the eigenvalues have real part 10−5

Other half of eigenvalues have real part −10−5

Normal matrix

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Eigenvalues

Real

Im
a

g

2 4 6 8 10 12

10
−15

10
−10

10
−5

10
0

Convergence

IRS Iterations

B
a
c
k
w

a
rd

 E
rr

o
r

R conv

E conv

19

R conv vs E conv

Half the eigenvalues lie at distance 10−5 outside unit circle
Other half of eigenvalues < .5 in absolute value
Normal matrix

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Eigenvalues, n=20

0 5 10 15 20 25 30
10

−20

10
−15

10
−10

10
−5

10
0

Convergence Plot

R conv
E conv

20

Convergence for Normal Matrices

Distance to splitting line
1e+00 1e-02 1e-04 1e-06 1e-08 1e-10 1e-12

D
im

en
si

on

10 8 15 21 28 35 41 48
100 8 15 21 28 35 41 48
500 9 15 22 28 35 42 48

1000 9 15 22 28 35 42 48
5000 10 15 22 30 35 42 49
10000 10 15 22 30 35 42 49

Table: Number of iterations to convergence for normal matrices

Number of iterations to convergence depends on distance
between the splitting line and the nearest eigenvalue

not on matrix dimension
In these experiments, all eigenvalues are at specified distance
from splitting line (and all eigenvalues are well-conditioned)
Convergence means relative backward error of O(n · ε)

21

Conclusions / Summary

New divide-and-conquer approach communication-optimal
minimizes words and messages, in sequential and parallel
constant factor more flops than standard algorithms
requires randomization

Convergence depends on distance of splitting line to eigenvalues

Progress involves
splitting the spectrum (reducing the problem size) or
splitting the complex plane (localizing the eigenvalues)

Stability is guaranteed, progress occurs with high probability

Still working on high performance implementation
haven’t plugged in fastest QR code, just multithreaded MKL

22

Thank You!

Please contact me with questions!
ballard@cs.berkeley.edu

http://www.eecs.berkeley.edu/~ballard

Find links to papers and other resources at the BEBOP webpage:
http://bebop.cs.berkeley.edu/

http://www.eecs.berkeley.edu/~ballard
http://bebop.cs.berkeley.edu/

Parallel subproblem assignment

Assign number of processors proportional to size of subproblem

assuming 2D blocked layout, at most one processor owns pieces
of both subproblems
use one of the idle processors to help out
cost of larger subproblem dominates cost of smaller subproblem

24

Convergence for Non-normal Matrices

Distance to splitting line
1.0e+00 1.0e-02 1.0e-04 1.0e-06 1.0e-08

C
on

di
tio

n
1.0e+00 8 5e-15 15 4e-15 21 2e-14 27 2e-13 35 5e-14

1.0e+02 8 6e-16 15 1e-14 21 1e-14 27 1e-13 34 3e-14
1.0e+04 9 2e-13 14 5e-13 22 1e-12 28 2e-12 34 2e-12
1.0e+06 9 9e-12 14 4e-11 22 6e-10 30 2e-10 32 1e-06
1.0e+08 9 7e-10 16 9e-09 18 9e-09 18 8e-09 24 5e-09

Table: Number of iterations to convergence and relative backward error after
convergence for non-normal matrices (n = 100)

In these experiments, all eigenvalues are at specified distance
from splitting line and one eigenvalue has specified condition #

Relative backward error is measured by ‖E21‖
‖A‖

In case of large error after convergence, can try restarting

25

Non-normal Matrix with Jordan block

Half the eigenvalues form Jordan block at 1.3
Other half of eigenvalues < .5 in absolute value

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Eigenvalues, n=32

0 5 10 15
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Convergence Plot

R conv
E conv

26

Try restarting

Half the eigenvalues form Jordan block centered at 1.3
Other half of eigenvalues < .5 in absolute value

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Eigenvalues, n=32

0 5 10 15 20
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Convergence Plot

R conv
E conv
E conv (r)

Restart iteration with nearly block triangular matrix

27

About RURV

If σr ∼ σ1 and σr+1 ∼ 1
poly(n)σr , then with high probability

σmin(R11) ≥ O
(

1√
rn

)
σr

σmax(R22) ≤ O
(

(rn)2
)
σr+1

first inequality matches best deterministic URV algorithms
second inequality is much weaker, but proof is lax (actual bound
may be linear)
repeated squaring will drive σr and σr+1 very far apart

28

About GRURV

Generalized RURV works for arbitrary products of matrices:

A1
±1 · A2

±1 · · ·Ak
±1

requires one RURV (or RULV) and k − 1 QR’s (or RQ’s)
output is U(R1

±1 · R2
±1 · · ·Rk

±1)V
rank-revealing properties same as for RURV (on one matrix)

Deterministic rank-revealing QR (for one matrix) doesn’t suffice in
generalized case

29

Sequential Algorithm for TREVC

Algorithm 1 Blocked Iterative Algorithm

for j = 1 to n/b do
solve T [j, j] · X [j, j] = X [j, j] · D[j, j] for X [j, j]
for i = j − 1 down to 1 do

S = 0
for k = i + 1 to j do

S = S + T [i, k] · X [k , j]
end for
solve T [i, i] · X [i, j] + S = X [i, j] · D[j, j] for X [i, j]

end for
end for

notation: T [i , j] is a b × b block
use blocksize b = Θ(

√
M) and block-contiguous DS for optimality

this algorithm ignores need for scaling to prevent under/overflow
a recursive, cache-oblivious algorithm also achieves optimality
LAPACK’s TREVC solves for one eigenvector at a time

30

Parallel Algorithm for PTREVC

Using 2D blocked layout for T on square grid of processors,
compute X with same layout
Iterate over block diagonals, updating trailing matrix each step

local computation occurs in gray: (a) and (d)
communication occurs along arrows: (b) is a broadcast of X block,
(c) is a nearest-neighbor pass of T block

(a) (b) (c) (d)

Communication costs within log P of optimality
ScaLAPACK’s PTREVC solves for one eigenvector at a time

31

References I

Z. Bai, J. Demmel, and M. Gu.
An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems.
Numerische Mathematik, 76(3):279–308, 1997.

A. Ya. Bulgakov and S. K. Godunov.
Circular dichotomy of a matrix spectrum.
Sibirsk. Mat. Zh., 29(5):59–70, 237, 1988.

J. Demmel, I. Dumitriu, and O. Holtz.
Fast linear algebra is stable.
Numer. Math., 108(1):59–91, 2007.

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU factorizations.
SIAM Journal on Scientific Computing, 2012.
To appear.

A.N. Malyshev.
Computing invariant subspaces of a regular linear pencil of matrices.
Siberian Math. J., 30:559–567, 1989.

32

